Impact of Cooling Air Injection on the Combustion Stability of a Premixed Swirl Burner Near Lean Blowout

Author:

Marosky A.1,Seidel V.,Sattelmayer T.2,Magni F.,Geng W.3

Affiliation:

1. e-mail:

2. Lehrstuhl für Thermodynamik, Technische Universität München, Garching 85748, Germany

3. Alstom Power, Baden 5401, Switzerland

Abstract

In most dry, low-NOx combustor designs of stationary gas turbines, the front panel impingement cooling air is directly injected into the combustor primary zone. This air partially mixes with the swirling flow of premixed reactants from the burner and reduces the effective equivalence ratio in the flame. However, local unmixedness and the lean equivalence ratio are supposed to have a major impact on combustion performance. The overall goal of this investigation is to answer the question of whether the cooling air injection into the primary combustor zone has a beneficial effect on combustion stability and NOx emissions or not. The flame stabilization of a typical swirl burner with and without front panel cooling air injection is studied in detail under atmospheric conditions close to the lean blowout limit (LBO) in a full-scale, single-burner combustion test rig. Based on previous isothermal investigations, a typical injection configuration is implemented for the combustion tests. Isothermal results of experimental studies in a water test rig adopting high-speed planar laser-induced fluorescence (HSPLIF) reveal the spatial and temporal mixing characteristics for the experimental setup studied under atmospheric combustion. This paper focuses on the effects of cooling air injection on both flame dynamics and emissions in the reacting case. To reveal dependencies of cooling air injection on combustion stability and NOx emissions, the amount of injected cooling air is varied. OH*-chemiluminescence measurements are applied to characterize the impact of cooling air injection on the flame front. Emissions are collected for different cooling air concentrations, both global measurements at the chamber exit, and local measurements in the region of the flame front close to the burner exit. The effect of cooling air injection on pulsation level is investigated by evaluating the dynamic pressure in the combustor. The flame stabilization at the burner exit changes with an increasing degree of dilution with cooling air. Depending on the amount of cooling, only a specific share of the additional air participates in the combustion process.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3