Effects of Effusion and Film Cooling Jet Momenta on Combustor Flow Fields

Author:

Briones Alejandro M.1,Stouffer Scott D.1,Vogiatzis Konstantinos2,Rein Keith3,Rankin Brent A.4

Affiliation:

1. Combustion Group, Energy and Environmental Engineering Department, University of Dayton Research Institute, 300 College Park, Dayton, OH 45469-0043 e-mail:

2. Engility/PETTT, Air Force Research Laboratory, AFRL/RC Building 676 2435 Fifth Street, Wright-Patterson AFB, OH 45433 e-mail:

3. Spectral Energies, LLC 5100 Springfield Street, Suite 301, Dayton, OH 45431 e-mail:

4. Air Force Research Laboratory, 1790 Loop Road N., Wright-Patterson AFB, OH 45433 e-mail:

Abstract

The effects of effusion and film cooling momenta on combustor flow fields are investigated. Steady, compressible three-dimensional (3D) simulations are performed on a single-swirler combustor using Reynolds-averaged Navier–Stokes (RANS) with flamelet generated manifold and Lagrangian–Eulerian multiphase spray, while accounting for dome and liner cooling. Two simulations are performed on the same mesh. One simulation is conducted using a parallelized, automated, predictive, imprint cooling (PAPRICO) model with dynamic flux boundary conditions and downstream pressure probing (DFBC-DPP). PAPRICO involves removing the cooling jet geometry from the dome and liner while retaining the cooling hole imprints. The PAPRICO model does not require a priori knowledge of the cooling flow rates through various combustor liner regions nor specific mesh partitioning. The other simulation is conducted using the homogenously patched cooling (HPC) model, which involves removing all the cooling jets. The HPC model applies volumetric sources adjacent to the combustor wall regions where cooling jets are present. The momentum source, however, becomes negligible. The HPC model is not predictive and requires tedious ex situ mass flow measurements from an auxiliary flowbench experiment, afflicted with systematic errors. Hence, the actual in situ air flow splits through the several combustor regions is not known with absolute certainty. The numerical results are compared with measurements of mass flow rates, static pressure drops, and path-integrated temperatures. The results demonstrate that it is critical to account for the discrete dome and liner cooling momentum to better emulate the reacting flow in a combustor.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3