A Reduced Mass-Spring-Mass-Model of Compliant Robots Dedicated to the Evaluation of Impact Forces

Author:

Jeanneau Guillaume123,Bégoc Vincent45,Briot Sébastien46

Affiliation:

1. UMR CNRS 6004 Laboratoire des Sciences du Numérique deNantes (LS2N), , Nantes 44321 , France;

2. École Centrale de Nantes (ECN), Nantes 44300, France;

3. Centre National de la Recherche Scientifique (CNRS), Paris 75016, France

4. UMR CNRS 6004 Laboratoire des Sciences du Numérique deNantes (LS2N), , Nantes 44321 , France ;

5. Institut Catholique d’Arts et Métiers (ICAM), La Roche-Sur-Yon 85000, France

6. Centre National de la Recherche Scientifique (CNRS) Nantes 44300, France

Abstract

Abstract The introduction of intrinsic compliance in the design of robots allows to reduce the risk for humans working in the vicinity of a robotic cell. Indeed, it permits to decouple the dynamic effects of the links’ inertia from those of the rotors’ inertia, thus reducing the maximum impact force in case of a collision. However, robot designers are lacking modeling tools to help simulate numerous collision scenarios, analyze the behavior of a compliant robot, and optimize its design. In this article, we introduce a method to reduce the dynamic model of a multi-link compliant robot to a simple translational mass-spring-mass system. Simulation results show that this reduced model allows to accurately predict the maximal impact force in case of a collision with a constrained human body part. Multiple impact scenarios are conducted on two case studies, a planar serial elastic robot and the R-Min robot, an underactuated parallel planar robot, designed for collaboration.

Publisher

ASME International

Subject

Mechanical Engineering

Reference30 articles.

1. A Review of the Severity Index;Versace,1971

2. Safety Evaluation of Physical Human-Robot Interaction Via Crash-Testing;Haddadin,2007

3. The Role of the Robot Mass and Velocity in Physical Human-Robot Interaction–Part I: Non-Constrained Blunt Impacts;Haddadin,2008

4. Robots and Robotic Devices – Collaborative Robots;ISO/TC 299: ISO/TS15066,2016

5. Measuring Mechanical Pain: The Refinement and Standardization of Pressure Pain Threshold Measurements;Melia;Behav. Res. Meth.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3