A Kinematics-Based Optimization Design for the Leg Mechanism of a Novel Earth Rover

Author:

Wu Yifan1,Guo Sheng1,Niu Lianzheng11,Yang Xinhua2,Zhao Fuqun3,He Yufan1

Affiliation:

1. Beijing Jiaotong University School of Mechanical, Electronic and Control Engineering, , Beijing 100044 , China

2. Beijing Jiaotong University School of Mechanical Electronic and Control Engineering, , Beijing 100044 , China

3. Beihang University School of Mechanical Engineering and Automation , Beijing 100191 , China

Abstract

Abstract This paper proposes a general kinematic-based design method for optimizing the side-mounted leg mechanism of BJTUBOT, a novel multi-mission quadrupedal Earth rover. The focus issue lies in designing structural improvements that not only enhance its kinematic performance but also prevent singularity, all while meeting the demands for miniaturization and lightweight without deviating from the original leg design concept. To solve this issue, a novel 3-UPRU&PPRR mechanism is envisaged based on the original configuration. Around the unique structural features of this mechanism, its inverse kinematic solution and Jacobian matrix are calculated, and a coupled motion relation between a key limb and its moving platform (MP) is presented. In order to achieve singularity avoidance, some typical singularity configurations based on line geometry analysis are given. In accordance with this result, an initial configuration for multi-objective dimensional optimization is presented. To further enhance its kinematic performance, we introduce the use of the GCI (global conditional index) performance at extreme positions as one of the optimization criteria based on the NSGA-II (Non-dominated Sorting Genetic Algorithm) algorithm, and directly measuring the crowding distance using the position vector of the U (universal) joints on the moving platform. This optimized mechanism prototype is demonstrated in a single-leg Adams simulation, which exhibits good velocity mapping effects and displacement accuracy. Finally, a new BJTUBOT prototype was constructed based on the optimized leg, and its flexibility was tested with various classical forms of motions. The workflow in this paper significantly improves the leg performance under the current design needs.

Funder

National Natural Science Foundation of China

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3