A Numerical Study on the Influence of Cerebrospinal Fluid Pressure on Brain Folding

Author:

Jafarabadi Fatemeh1,Wang Shuolun1,Holland Maria A.21

Affiliation:

1. University of Notre Dame Department of Aerospace and Mechanical Engineering, , Notre Dame, IN 46556

2. University of Notre Dame Bioengineering Graduate Program, , Notre Dame, IN 46556 ;

Abstract

AbstractOver the past decades, the buckling instability of layered materials has been the subject of analytical, experimental, and numerical research. These systems have traditionally been considered with stress-free surfaces, and the influence of surface pressure is understudied. In this study, we developed a finite element model of a bilayer experiencing compression, and found that it behaves differently under surface pressure. We investigated the onset of buckling, the initial wavelength, and the post-buckling behavior of a bilayer system under two modes of compression (externally applied and internally generated by growth). Across a wide range of stiffness ratios, 1 < μf/μs < 100, we observed decreased stability in the presence of surface pressure, especially in the low-stiffness-contrast regime, μf/μs < 10. Our results suggest the importance of pressure boundary conditions for the stability analysis of bilayered systems, especially in soft and living matter physics, such as folding of the cerebral cortex under cerebrospinal fluid pressure, where pressure may affect morphogenesis and buckling patterns.

Funder

Directorate for Computer and Information Science and Engineering

Directorate for Engineering

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3