Folding wrinkles of a thin stiff layer on a soft substrate

Author:

Sun Jeong-Yun1,Xia Shuman2,Moon Myoung-Woon3,Oh Kyu Hwan1,Kim Kyung-Suk2

Affiliation:

1. Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Republic of Korea

2. School of Engineering, Brown University, Providence, RI 02912, USA

3. Interdisciplinary Fusion Technology Division, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea

Abstract

We present the mechanics of folding surface-layer wrinkles on a soft substrate, i.e. inter-touching of neighbouring wrinkle surfaces without forming a cusp. Upon laterally compressing a stiff layer attached on a finite-elastic substrate, certain material nonlinearities trigger a number of bifurcation processes to form multi-mode wrinkle clusters. Some of these clusters eventually develop into folded wrinkles. The first bifurcation of the multi-mode wrinkles is investigated by a perturbation analysis of the surface-layer buckling on a pre-stretched neo-Hookean substrate. The post-buckling equilibrium configurations of the wrinkles are then trailed experimentally and computationally until the wrinkles are folded. The folding process is observed at various stages of wrinkling, by sectioning 20–80 nm thick gold films deposited on a polydimethylsiloxane substrate at a stretch ratio of 2.1. Comparison between the experimental observation and the finite-element analysis shows that the Ogden model deformation of the substrate coupled with asymmetric bending of the film predicts the folding process closely. In contrast, if the bending stiffness of the film is symmetric or the substrate follows the neo-Hookean behaviour, then the wrinkles are hardly folded. The wrinkle folding is applicable to construction of long parallel nano/micro-channels and control of exposing functional surface areas.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 151 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3