Instability-Induced Origami Design by Topology Optimization

Author:

Wang Weiwei,Liu Ke,Wu Meiqi,Li Hongyuan,Lv Pengyu,Duan Huiling

Abstract

AbstractInstability-induced wrinkle patterns of thin sheets are ubiquitous in nature, which often result in origami-like patterns that provide inspiration for the engineering of origami designs. Inspired by instability-induced origami patterns, we propose a computational origami design method based on the nonlinear analysis of loaded thin sheets and topology optimization. The bar-and-hinge model is employed for the nonlinear structural analysis, added with a displacement perturbation strategy to initiate out-of-plane buckling. Borrowing ideas from topology optimization, a continuous crease indicator is introduced as the design variable to indicate the state of a crease, which is penalized by power functions to establish the mapping relationships between the crease indicator and hinge properties. Minimizing the structural strain energy with a crease length constraint, we are able to evolve a thin sheet into an origami structure with an optimized crease pattern. Two examples with different initial setups are illustrated, demonstrating the effectiveness and feasibility of the method.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Space Exploration Program

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3