Exponential Stabilization of Transverse Vibration and Trajectory Tracking for General In-Plane Motion of an Euler–Bernoulli Beam Via Two-Time Scale and Boundary Control Methods

Author:

Lotfavar Amir1,Eghtesad Mohammad2

Affiliation:

1. School of Mechanical & Aerospace Engineering, Shiraz University of Technology, Modarres Boulevard, Shiraz, Fars, 71555-313 Iran

2. Department of Mechanical Engineering, Shiraz University, Mollasadra Avenue, Shiraz, Fars, 71348-51154 Iran

Abstract

In this paper, exponential stabilization of vibration of a flexible beam together with its general in-plane trajectory tracking is presented. Coupled beam dynamics including beam vibration (flexible/fast subsystem) and its rigid in-plane motion (rigid/slow subsystem) takes place in two different time domains. Therefore, to have the beam track a desired trajectory while suppressing its vibration by an exponential rate of decay, a composite control scheme is elaborated by two-time scale (TTS) control theory. This control law has two parts: one is a tracking controller designed for the rigid subsystem based on inverse dynamic law, and the other one is an exponential stabilizing controller for the flexible subsystem based on boundary control (BC) laws. Exponential stabilization is proved by using a metric containing kinetic and potential energies of the fast subsystem and by feedback of the rate of deflection and the slope at one end of the beam. Simulation results show that fast BC is able to remove undesirable vibration of the flexible beam and together with the slow inverse controller is able to provide very good trajectory tracking with acceptable actuating forces/moments. Also, they illustrate that tracking errors and the vibration amplitude are decreased versus time by the fast exponential stabilizing control law compared with an asymptotic stabilizing control law.

Publisher

ASME International

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3