Approximation of the Strain Field Associated With an Inhomogeneous Precipitate—Part 1: Theory

Author:

Johnson W. C.1,Earmme Y. Y.2,Lee J. K.1

Affiliation:

1. Department of Metallurgical Engineering, Michigan Technological University, Houghton, Mich. 49931

2. Department of Mechanical Science, Korea Advanced Institute of Science, P.O. Box 150, Cheong Ryang Ri, Seoul, Korea

Abstract

Two independent methods are derived for the calculation of the elastic strain field associated with a coherent precipitate of arbitrary morphology that has undergone a stress-free transformation strain. Both methods are formulated in their entirety for an isotropic system. The first method is predicated upon the derivation of an integral equation from consideration of the equations of equilibrium. A Taylor series expansion about the origin is employed in solution of the integral equation. However, an inherently more accurate means is also developed based upon a Taylor expansion about the point of which the strain is to be calculated. Employing the technique of Moschovidis and Mura, the second method extends Eshelby’s equivalency condition to the more general precipitate shape where the constrained strain is now a function of position within the precipitate. An approximate solution to the resultant system of equations is obtained through representation of the equivalent stress-free transformation strain by a polynomial series. For a given order of approximation, both methods reduce to the determination of the biharmonic potential functions and their derivatives.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3