The Fundamental Formulation for Inhomogeneous Inclusion Problems with the Equivalent Eigenstrain Principle

Author:

Ma LifengORCID,Korsunsky Alexander M.ORCID

Abstract

In this paper, and on the basis of the equivalent eigenstrain principle, a fundamental formulation for inhomogeneous inclusion problems is proposed, which is to transform the inhomogeneous inclusion problems into auxiliary equivalent homogenous inclusion problems. Then, the analysis, which is based on the equivalent homogenous inclusions, would significantly reduce the workload and would enable the analytical solutions that are possible for a series of inhomogeneous inclusion problems. It also provides a feasible way to evaluate the effective properties of composite materials in terms of their equivalent homogenous materials. This formulation allows for solving the problems: (i) With an arbitrarily connected and shaped inhomogeneous inclusion; (ii) Under an arbitrary internal load by means of the nonuniform eigenstrain distribution; and (iii) With any kind of external load, such as singularity, uniform far field, and so on. To demonstrate the implementation of the formulation, an oblate inclusion that interacts with a dilatational eigenstrain nucleus is analyzed, and an explicit solution is obtained. The fundamental formulation that is introduced here will find application in the mechanics of composites, inclusions, phase transformation, plasticity, fractures, etc.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3