Numerical Investigation of the Fan Flutter Mechanism Related to Acoustic Propagation Characteristics

Author:

Dong Xu1,Zhang Yanfeng1,Lu Xingen1,Zhang Yingjie1,Gan Jiuliang1

Affiliation:

1. Key Laboratory of Light-Duty Gas-Turbine, Institute of Engineering Thermophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Abstract In this study, the flutter mechanism related to acoustic propagation characteristics of a wide-chord fan rotor was investigated numerically. The first bending mode and its two and three nodal diameters traveling wave patterns were considered. The unsteady disturbance induced by the blade vibration in the duct gradually changed from cut-off to cut-on mode by increasing the blade frequency. Flutter occurred in some specific frequency range. The upstream cut-on and downstream cut-off condition with the risk of flutter previously identified in other studies was also observed in this paper. A new flutter risk frequency in which the blade frequency was less than the upstream cut-on frequency was found. The results showed that the effects of flow features and acoustic propagation characteristics on aeroelasticity were independent. To explain why flutter was more likely to occur near stall, two sets of frequencies representing different acoustic propagation characteristics were selected to carry out aeroelastic simulations for different working conditions along the same speed line. When flutter occurred, the suction side always provided positive damping, and the pressure side always provided negative damping. This study analyzed the effect of different flow features, such as shock and radial migration, in detail. The phase difference between the pressure fluctuations on the pressure side and the blade velocity played a vital role in fan flutter.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3