Leak Before Break: Studies in Support of New R6 Guidance on Leak Rate Evaluation

Author:

Taggart J. P.1,Budden P. J.2

Affiliation:

1. Serco Assurance, Birchwood Park, Warrington, Cheshire WA3 6GA, United Kingdom

2. British Energy Generation Ltd., Barnett Way, Barnwood, Gloucestershire GL4 3RS, United Kingdom

Abstract

The concept of leak-before-break (LBB) is often used in safety cases for pressure systems, particularly, in the nuclear industry. An important factor in making a LBB case is in the prediction of the leak rate of fluid through a crack. This paper presents a summary of a program of work, which had the aim of improving guidance on leak rate evaluation for the LBB procedures in the R6 defect assessment methodology. Methods of calculating leak rates have been reviewed, and this has led to a crack morphology model being proposed, which represents single-phase isothermal compressible flow through a crack. In the crack morphology model, the flow is assumed by default to be fully rough turbulent, and the effective roughness to vary between a local roughness value for narrow cracks and a global value (i.e., the overall crack contours) for wide cracks. The effect of pressure drops due to changes in the flow direction at crack turns has also been included. Calculations using the model show that the friction factor relation due to Spence et al. (1991, “Leakage Flow Through Small Cracks—Report of Second Stage of Experimental Work,” unpublished) gives better agreement with measured flow rates than that due to Button et al. (1978, “Gas Flow Through Cracks,” ASME J. Fluids Eng., 100, pp. 453–458), which tends to overestimate the flow rate for the examples studied. The inclusion of an inertial pressure term arising from changes in overall flow direction appears to be justified.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference16 articles.

1. R6 Revision 4, 2001, “Assessment of the Integrity of Structures Containing Defects,” British Energy Generation Ltd.

2. 1993, DAFTCAT User Manual, Nuclear Electric plc, Berkeley Technology Centre, Berkeley, UK.

3. Manning, P. T. , 1977, “The Calculation of Gas Flow Rates Through Cracks,” CEGB Report RD/B/N4136.

4. Simple Methods For Predicting Gas Leakage Flow Through Cracks;Ewing

5. Gas Flow Through Cracks;Button;ASME J. Fluids Eng.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3