Gas Flow Through Cracks

Author:

Button B. L.1,Grogan A. F.2,Chivers T. C.3,Manning P. T.3

Affiliation:

1. Department of Mechanical Engineering, Lanchester Polytechnic, Coventry, Warwickshire, U.K.

2. Heat Transfer Department, Associated Engineering Developments Ltd., Rugby, Warwickshire, U.K.

3. Tribology Section, Berkeley Nuclear Laboratories, Central Electricity Generating Board, Research Division, Gloucestershire, U.K.

Abstract

Nitrogen flow through 13 idealized cracks has been measured and compared with theoretical predictions. Gas conditions covered upstream pressure and temperature ranges of between 10 and 50 bars and 277 and 295°K, respectively, exhausting to atmosphere. Hydraulic smooth, convergent and parallel cracks and rough parallel cracks were tested for depths varying from 6 to 810 μm. The effect of area change is adequately predicted from theory if a friction factor Reynolds number relationship is assumed. The remaining data are presented on the basis of a friction factor, Reynolds number, and hydraulic diameter/surface roughness parameter basis. Theoretical predictions are successful where roughness and flow are high enough for the results to be in the completely turbulent regimes. For the hydraulic smooth parallel cracks the flow is lower than predicted for laminar and turbulent flow and this discrepancy will be the subject for further investigations.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3