Affiliation:
1. Department of Surgery, Division of Vascular Surgery, University of Pittsburgh, Suite 200, Bridgeside Point, Pittsburgh, PA 15219; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Drive, Pittsburgh, PA 15219
2. Department of Mechanical Engineering and Material Science, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219
Abstract
Numerical algorithms for subspace system identification (N4SID) are a powerful tool for generating the state space (SS) representation of any system. The purpose of this work was to use N4SID to generate SS models of the flowrate and pressure generation within an ex vivo vascular perfusion system (EVPS). Accurate SS models were generated and converted to transfer functions (TFs) to be used for proportional integral and derivative (PID) controller design. By prescribing the pressure and flowrate inputs to the pumping components within the EVPS and measuring the resulting pressure and flowrate in the system,_four TFs were estimated;_two for a flowrate controller (HRP,f and HRPP,f) and two for a pressure controller (HRP,p and HRPP,p). In each controller,_one TF represents a roller pump (HRP,f and HRP,p),_and the other represents a roller pump and piston in series (HRPP,f and HRPP,p). Experiments to generate the four TFs were repeated five times (N=5) from which average TFs were calculated. The average model fits, computed as the percentage of the output variation (to_the_prescribed_inputs) reproduced by the model, were 94.93±1.05% for HRP,p, 81.29±0.20% for HRPP,p, 94.45±0.73% for HRP,f, and 77.12±0.36% for HRPP,f. The simulated step, impulse, and frequency responses indicate that the EVPS is a stable system and can respond to signals containing power of up to 70_Hz.
Subject
Physiology (medical),Biomedical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献