Local Furnace Data and Modeling Comparison for a 600-MWe Coal-Fired Utility Boiler

Author:

Hwang Yuh-Long1,Howell John R.2

Affiliation:

1. Dynegy Marketing and Trade, Houston, TX

2. Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712

Abstract

Reductions in furnace exit gas temperature (FEGT) by changing boiler operating variables and/or adding wall soot blowers and/or lowering burner elevations are investigated. Evaluation of these approaches requires experimental furnace testing and computational furnace modeling. The experimental facility is a Combustion Engineering corner-fired pulverized-coal boiler with a capacity of 606 MWe. Local gas temperature distributions, local radiative and total wall heat flux distributions, and stack NOx were measured during constant-load furnace tests under various combinations of burner configuration, burner tilt angles, excess-O2 setpoints and overfire airflow rate. These measurements are used for tuning and calibrating a furnace model based on the PCGC-3 code developed by Brigham Young University. The experimental data gathered in this work comprise a comprehensive set under controlled conditions on a very-large-scale coal-fired plant and provides information for use in comparing the predictions of furnace-design codes.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3