Failure Mechanisms Driven Reliability Models for Power Electronics: A Review

Author:

Gabriel Okafor Ekene1,Huitink David Ryan1

Affiliation:

1. Department of Mechanical Engineering, University of Arkansas , Fayetteville, AR 72701

Abstract

Abstract Miniaturization as well as manufacturing processes that electronics devices are subjected to often results in to increase in operational parameters such as current density, temperature, mechanical load, and with potential to induce stresses that may be detrimental to device reliability. Past studies have identified some failure mechanisms common to these devices. Examples of these failure mechanisms include fatigue, electromigration, stress induced voiding, corrosion, conduction filament formation, and time-dependent dielectric breakdown. While some review activities related to reliability model development based on these failure mechanisms can be easily found in literature, to the best of our knowledge, a single review paper, which captures the reliability model progresses made over the past four decades across these failure mechanisms in comparison with Standards such as Joint Electron Device Engineering Council (JEDEC) and Institute for Printed Circuits (IPC) is to the best of our knowledge lacking. To fill this gap, a detailed review of failure mechanism driven reliability models, with emphasis on physics of failure (PoF) for power electronics was carried out in this paper. Although, other failure mechanisms exist, our review is only limited to fatigue, electromigration, stress induced voiding, corrosion, conduction filament formation, and time-dependent dielectric breakdown. It was found that most reliability research modeling efforts are yet to be fully integrated into Standards.

Funder

Office of Naval Research

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference231 articles.

1. Thermomechanical Reliability Challenges and Goals and Design for Reliability Methodologies for Electric Vehicle Systems,2017

2. High Reliability Wire-Less Power Module Structure,2018

3. Physics-of-Failure-Based Prognostics for Electronic Products;Trans. Inst. Meas. Control,2009

4. Reliability Prediction: The Turn-Over Point,1997

5. Comparison of Electronics-Reliability Assessment Approaches;IEEE Trans. Reliab.,1993

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3