Evaluation and Design of Displacement-Amplifying Compliant Mechanisms for Sensor Applications

Author:

Krishnan Girish1,Ananthasuresh G. K.1

Affiliation:

1. Mechanical Engineering, Indian Institute of Science, Bangalore 560 012, India

Abstract

Displacement-amplifying compliant mechanisms (DaCMs) reported in literature are widely used for actuator applications. This paper considers them for sensor applications that rely on displacement measurement, and proposes methods to evaluate and design such mechanisms. The motivation of this work is to increase the sensitivity of a micromachined capacitive accelerometer and a minute mechanical force sensor using DaCMs. A lumped spring-mass-lever (SML) model, which effectively captures the effects of appending a DaCM to a sensor, is introduced. This model is a generalization of the ubiquitously used spring-mass model for the case of an elastic body that has two points of interest—an input and an output. The SML model is shown to be useful in not only evaluating the suitability of an existing DaCM for a new application but also for designing a new DaCM. With the help of this model, we compare a number of DaCMs from literature and identify those that nearly meet the primary problem specifications. To obtain improved designs that also meet the secondary specifications, topology and size-optimization methods are used. For the two applications considered in this paper, we obtain a few new DaCM topologies, which are added to the catalog of DaCMs for future use. The spring-mass-lever model, the evaluation and design methods, and the catalog of DaCMs presented here are useful in other sensor and actuator applications.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3