Energy Harvesting Dynamic Vibration Absorbers

Author:

Ali Shaikh Faruque1,Adhikari Sondipon2

Affiliation:

1. Assistant Professor Department of Applied Mechanics Indian Institute of Technology Madras Chennai 600 036, India e-mail:

2. Professor Member of ASME Chair of Aerospace Engineering College of Engineering Swansea University Singleton Park, Swansea SA2 8PP, UK e-mail:

Abstract

Energy harvesting is a promise to harvest unwanted vibrations from a host structure. Similarly, a dynamic vibration absorber is proved to be a very simple and effective vibration suppression device, with many practical implementations in civil and mechanical engineering. This paper analyzes the prospect of using a vibration absorber for possible energy harvesting. To achieve this goal, a vibration absorber is supplemented with a piezoelectric stack for both vibration confinement and energy harvesting. It is assumed that the original structure is sensitive to vibrations and that the absorber is the element where the vibration energy is confined, which in turn is harvested by means of a piezoelectric stack. The primary goal is to control the vibration of the host structure and the secondary goal is to harvest energy out of the dynamic vibration absorber at the same time. Approximate fixed-point theory is used to find a closed form expression for optimal frequency ratio of the vibration absorber. The changes in the optimal parameters of the vibration absorber due to the addition of the energy harvesting electrical circuit are derived. It is shown that with a proper choice of harvester parameters a broadband energy harvesting can be obtained combined with vibration reduction in the primary structure.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3