Re-designing strategy to enable a sub-system to function as a dynamic vibration absorber

Author:

Matsubara Masami1ORCID,Takahashi Kohei2,Furuya Kohei3,Saito Akira4ORCID,Kawamura Shozo2

Affiliation:

1. Department of Modern Mechanical Engineering, Waseda University, Tokyo, Japan

2. Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Japan

3. Department of Mechanical Engineering, Gifu University, Gifu-shi, Japan

4. Department of Mechanical Engineering, Meiji University, Kawasaki, Japan

Abstract

In the design of a typical dynamic absorber, the components corresponding to the dynamic vibration absorber (DVA) should be reduced to a lumped constant system model comprising a mass, spring, and damper. The equivalent mass and stiffness must be determined and linked to design coefficients. However, no studies on the dynamic design of a main structure (main system) and an attached DVA (sub-system) based on an FE model without constructing a reduced-order equivalent model with a few DOFs have been conducted. This study proposes a new method of extracting and simplifying the design of a sub-system to function as a DVA using the state of a finite element (FE) model. We established the relationship between the condition of the sub-system functioning as a DVA and the modal parameter of the entire system. According to a survey, the modal kinetic energies, which were calculated from the partial mass matrix and mode vectors, of the main system and sub-system are approximately equal. We used this relationship to redesign the sub-system. As the modal kinetic energy was used as a design index, the FE model could be redesigned without constructing an equivalent lumped parameter model consisting of two or three degrees of freedom (DOFs) as in the conventional DVA design. We demonstrated the relationship between the modal kinetic energies of the main system and sub-system when it functions as a DVA for a 2-DOF lumped mass model and discussed how to distinguish the sub-system from the entire system (multi-DOF system). Considerable improvement was found in re-designing at FE model, validating the proposed method. The proposed method can be used to redesign components that behave similarly to dynamic absorbers to effectively reduce vibration from the results of FE analysis, without modeling the system as a lumped constant system.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3