A New Approach for Meteorological Variables Prediction at Kuala Lumpur, Malaysia, Using Artificial Neural Networks: Application for Sizing and Maintaining Photovoltaic Systems

Author:

Khatib Tamer1,Mohamed Azah1,Mahmoud M.2,Sopian K.3

Affiliation:

1. Department of Electrical, Electronic and System Engineering,Faculty of Engineering and Built Environment, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

2. Department of Electrical Engineering,Engineering Faculty, An-Najah National University, Nablus 91541, Palestine

3. Solar Energy Research Institute, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia

Abstract

This research presents a new meteorological variables prediction approach for Malaysia using artificial neural networks. The developed model predicts four meteorological variables using sun shine ratio, day number, and location coordinates. These meteorological variables are solar energy, ambient temperature, wind speed, and relative humidity. However, three statistical values are used to evaluate the proposed model. These statistical values are mean absolute percentage error (MAPE), mean bias error (MBE), and root mean square error (RMSE). Based on results, the developed model predicts accurately the four meteorological variables. The MAPE, RMSE, and MBE in predicting solar radiation are 1.3%, 5.8 (1.8%), and 0.9 (0.3%), respectively, while the MAPE, RMSE, and MBE values for ambient temperature prediction are 1.3%, 0.4 (1.7%), and 0.1 (0.4%), respectively. In addition, the MAPE, RMSE, and MBE values in relative humidity prediction are 3.2%, 3.2, and 0.2. As for wind speed prediction, it is the worst in accuracy among the predicted variables because the MAPE, RMSE, and MBE values are 28.9%, 0.5 (31.3%), and 0.02 (1.25%). Such a developed model helps in sizing photovoltaic (PV) systems using solar energy and ambient temperature records. Moreover, wind speed and relative humidity records could be used in estimating dust concentration group which leads to dust deposition on a PV system.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference53 articles.

1. Solar Energy: The Largest Energy Resource;Denholm

2. Impact of Dust on Solar Photovoltaic (PV) Performance: Research Status, Challenges and Recommendations;Mani;Renewable Sustainable Energy Rev.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3