Ballistic-Diffusive Heat Conduction in Thin Films by Phonon Monte Carlo Method: Gray Medium Approximation Versus Phonon Dispersion

Author:

Li Han-Ling1,Shiomi Junichiro2,Cao Bing-Yang3

Affiliation:

1. Key Laboratory for Thermal Science and Power Engineering, Department of Engineering Mechanics, Ministry of Education, Tsinghua University, Beijing 100084, China

2. Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

3. Key Laboratory for Thermal Science and Power Engineering of Department of Engineering Mechanics, Ministry of Education, Tsinghua University, Beijing 100084, China

Abstract

Abstract The gray medium approximation treating all phonons with an averaged and representative mean-free-path (MFP) is an often used method in analyzing ballistic-diffusive heat conduction at nanoscale. However, whether there exists a reasonable value of the average MFP which effectively represents the entire spectrum of modal MFPs remains unclear. In this paper, phonon Monte Carlo (MC) method is employed to study the effects of the gray medium approximation on ballistic-diffusive heat conduction in silicon films by comparing with dispersion MC simulations. Four typical ways for calculating the average MFP with gray medium approximation are investigated. Three of them are based on the weighted average of the modal MFPs, and the remaining one is based on the weighted average of the reciprocals of the modal MFPs. The first three methods are found to be good at predicting effective thermal conductivity and heat flux distribution, but have difficulties in temperature profile, while the last one performs better for temperature profile than effective thermal conductivity and heat flux distribution. Therefore, none of the average MFPs can accurately characterize all the features of ballistic-diffusive heat conduction for the gray medium approximation. Phonon dispersion has to be considered for the accurate thermal analyses and modeling of ballistic-diffusive heat transport. Our work could be helpful for further understanding of phonon dispersion and more careful use of the gray medium approximation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3