Design and Feasibility Study of Biomass-Driven Combined Heat and Power Systems for Rural Communities

Author:

Schicker Philippe C.1,Spayde Dustin1,Cho Heejin1

Affiliation:

1. Department of Mechanical Engineering, Mississippi State University, Mississippi State, MS 39762

Abstract

Abstract Meeting energy demands at crucial times can often be jeopardized by an unreliable power supply from the grid. Local, onsite power generation, such as combined heat and power (CHP) systems, may safeguard against grid fluctuations and outages. CHP systems can provide a more reliable and resilient energy supply to buildings and communities while it can also provide energy-efficient, cost-effective, and environmentally sustainable solutions compared to centralized power systems. With a recent increased focus on biomass as an alternative fuel source, biomass-driven CHP systems have been recognized as a potential technology to bring increased efficiency of fuel utilization and environmentally sustainable solutions. Biomass as an energy source is already created through agricultural and forestry by-products and may thus be efficient and convenient to be transported to remote rural communities. This paper presents a design and feasibility analysis of biomass-driven CHP systems for rural communities. The viability of wood pellets as a suitable fuel source is explored by comparing it to a conventional grid-connected system. To measure viability, three performance parameters—operational cost (OC), primary energy consumption (PEC), and carbon dioxide emission (CDE)—are considered in the analysis. The results demonstrate that under the right conditions wood pellet-fueled CHP systems create economic and environmental advantages over traditional systems. The main factors in increasing the viability of biomass-driven CHP (bCHP) systems are the appropriate sizing and operational strategies of the system and the purchase price of biomass with respect to the price of traditional fuels.

Funder

U.S. Department of Agriculture

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3