Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities

Author:

Gul Eid,Baldinelli GiorgioORCID,Bartocci PietroORCID

Abstract

New energy technologies are gaining rising importance because of climate change and increasing energy demand, and they show an enormous potential to mitigate environmental issues. With the purpose of maximizing the renewable energy utilization, combined heat and power systems are considered more effective, economical, and ecological. However, renewable energy-based combined heat and power systems are still in the development phase. Hence, this study presents a new methodology to produce combined electricity and heat from wind and solar PV systems to meet the energy demand of small, distributed communities. For this scope, an optimization model is developed to exploit rationally the power generation from renewables and meet the electricity and heating demand of two selected communities. The curtailed energy of solar and wind systems is used to produce heat by a thermal load controller combined with a natural gas boiler. The developed model is also integrated with the grid station for energy exchange. This study contributes also to evaluate the economic and environmental feasibility of combined heat and power systems, and determine the best optimal operational strategies to extend the renewable energy utilization and minimize energy costs. The obtained results show that a significant amount of clean energy can be produced, covering the 79% of the energy demand of the selected communities, at the lowest levelized cost of energy of 0.013 €/kWh; meanwhile, the proposed system reduces 4129 tons of CO2 emissions annually.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3