Numerical Study on Thermal Hydraulic and Flow-Induced Noise in Triply Periodic Minimal Surface (TPMS) Channels

Author:

Gan Xinhai12,Wang Jinghan3,Liu Zhiyu3,Zeng Min3,Wang Qiuwang3,Cheng Zhilong3

Affiliation:

1. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi’an Jiaotong University , Xi'an 710049, China ; , Xinxiang 453000, China

2. Aviation Industry Corporation of China Xinxiang Aviation Industry (Group) Co., Ltd , Xi'an 710049, China ; , Xinxiang 453000, China

3. Key Laboratory of Thermo-Fluid Science and Engineering, Ministry of Education, Xi'an Jiaotong University , Xi'an 710049, China

Abstract

Abstract Mini-channel heat exchangers are widely used due to their compact structures and high efficiency. Integrating heat exchangers with triply periodic minimal surfaces (TPMS) has shown great potential to optimize the flow and heat transfer performance. In this study, Gyroid (G), Diamond (D), and IWP type TPMS-based heat exchangers are constructed in three dimensions. The thermal-hydraulic, entropy production, and flow-induced noise characteristics of TPMS-based heat exchangers are numerically investigated. The results indicate that the TPMS channels with larger viscosity entropy production have smaller thermal entropy production due to the greater flow disturbance. The G-channel has the highest friction factor and the lowest sound source intensity, while the D-channel obtains the strongest sound source intensity due to frequent cross-collisions of the fluid. The sound source intensity of the IWP channel is 10% lower than the D-channel. The wall dipole sound source plays a dominant role in TPMS channels. This study provides different perspectives to evaluate the performance of a TPMS heat exchanger and provides references for the design and optimization of TPMS heat exchangers.

Publisher

ASME International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3