Affiliation:
1. GAZI UNIVERSITY, INSTITUTE OF SCIENCE, INDUSTRIAL DESIGN ENGINEERING (DR)
2. Gazi Üniversitesi
3. GAZI UNIVERSITY, FACULTY OF TECHNOLOGY, DEPARTMENT OF INDUSTRIAL DESIGN ENGINEERING, INDUSTRIAL DESIGN ENGINEERING PR.
Abstract
Scaffold design is a key study area in tissue engineering. A scaffold is a three-dimensional framework that provides temporary support for the formation of new tissue before being implanted with isolated cells. The aim of tissue engineering scaffolds is to be colonized by cells. To ensure sufficient tissue growth, scaffolds need to transmit the necessary chemical and physical signals. The design of the scaffold determines its functionality. The design and manufacturing of tissue engineering scaffolds is a highly complex procedure. Scaffolds must have the necessary qualities to create an optimal architecture for cell growth, proliferation, and differentiation in order to form tissue. However, constrained structural designs and outdated manufacturing procedures impede the enhancement of scaffold qualities. To address these restrictions, researchers are merging computer-aided scaffold design with 3D printing processes during production. This method permits the design and manufacture of scaffolds with extremely intricate microstructures. The literature shows that computer-aided design combined with 3D printing technology is often utilized to design and manufacture nerve guide conduits for nerve regeneration. In this study, three different nerve guide conduit structures were designed and produced. Two of them are based on triple periodic minimal surfaces derived from Gyroid, schwarz. Although triple periodic minimal surfaces used as the basis for scaffold designs offer promising advantages for tissue engineering applications, limited information is available regarding their manufacturability. The designs created in this study, as well as their fabrication, will add to the literature on the manufacturability of triple periodic minimum surfaces.