The Effect of Reaction on Compressor Performance

Author:

Chana Krishan1,Miller Robert2

Affiliation:

1. 1 JJ Thomson Ave Cambridge, CB30DY United Kingdom

2. Unversity of Cambridge Cambridge, CB3 0DY United Kingdom

Abstract

Abstract Reaction is the fundamental parameter by which the asymmetry of the velocity triangle of a stage is set. Little is understood about the effect that reaction has on either the efficiency or the operating range of a compressor. A particular difficulty in understanding the effect of reaction is that the rotor and stator have a natural asymmetry caused by the centrifugal effects in the rotor boundary layer being much larger than that in the stator boundary layer. In this paper a novel approach has been taken: McKenzie's ‘linear repeating stage’ concept is used to remove the centrifugal effects. The centrifugal effects are then reintroduced as a body force. This allows the velocity triangle effect and centrifugal force effect to be decoupled. The paper shows the surprising result that, depending on how the solidity is set, a 50% reaction stage can either result in the maximum, or the minimum, profile loss. When the centrifugal effects are removed, 50% reaction is shown to minimise endwall loss, maximise stage efficiency and maximise operating range. When the centrifugal effects are reintroduced, the compressor with the maximum design efficiency is found to rise in reaction by 5% (from 50% reaction to 55% reaction) and the compressor with the maximum operating range is found to rise in reaction by 15% (from 50% reaction to 65% reaction).

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3