Numerical Investigation of the Influence of the Degree of Reaction in an Axial Compressor Stage With Tandem Vanes

Author:

Giannini Samuele1,Luz Guilherme M.1,von Jeinsen Philipp1,Straccia Mattia1,Gümmer Volker1

Affiliation:

1. Technical University of Munich Chair of Turbomachinery and Flight Propulsion, , Garching, Bavaria 85748 , Germany

Abstract

Abstract Many investigations have defined Smith-type diagrams to guide the preliminary designs of conventional axial compressor stages on the choice of loading, flow coefficient, and degree of reaction. However, the recent development of unconventional axial compressor stages with tandem vanes has not been accompanied by similar studies aimed at tailoring existing correlations to the new type of vanes. While it is clear that axial compressor stages with tandem vanes operate in higher working ranges than conventional stages, it is less clear how the choice of reaction affects the aerodynamic behavior of such setups. For this purpose, this paper numerically investigates a low-speed axial compressor stage with different degrees of reaction for increasing loading levels. The metal angles of the unshrouded rotor and the shrouded stator are modified to ensure that the other design parameters of the stage, namely the work and flow coefficients, are kept constant, and that the influence of the degree of reaction is isolated. The investigation begins with Q2D simulations of the reference midspan aerofoils. It then extends to a 3D configuration, while maintaining the radial distribution of the aerofoil parameters from the reference 3D blades. New correlations are presented, aiming to show how the performance of the stage in terms of efficiency, total pressure losses, and loading coefficients of the vanes are influenced by the different degrees of reaction investigated. This paper, therefore, provides insight into the preliminary choices of parameters for the design of axial compressor stages with tandem vanes.

Publisher

ASME International

Subject

Mechanical Engineering

Reference29 articles.

1. The 1993 IGTI Scholar Lecture: Loss Mechanisms in Turbomachines;Denton;ASME J. Turbomach.,1993

2. Design of Axial Compressors;Howell;Proc. Inst. Mech. Eng.,1945

3. Loss and Stall Analysis of Compressor Cascades;Lieblein;ASME J. Basic Eng.,1959

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3