A Multi-Scale System Analysis and Verification for Improved Contact Fatigue Life Cycle of a Cam-Roller System

Author:

Hua D. Y.1,Farhang K.2,Seitzman L. E.1

Affiliation:

1. Surface Engineering and Tribology, Advanced Materials Technology, Caterpillar Inc., Peoria, IL 61656-1875

2. Department of Mechanical Engineering and Energy Processes, Southern Illinois University at Carbondale, Carbondale, IL 62901-6603

Abstract

Surface distress in the form of contact fatigue is encountered in cam-roller systems. The contact fatigue appears to be initiated at micrometer-scale subsurface region. High stress is a result of the macro-scale requirement on the cam-roller motion event that produces high contact loads due to inertia of the roller and its follower link. Sliding of the roller and its impact onto the cam surface further compounds the detrimental effect of contact load. While conventionally a Hertz contact stress analysis can be used in ascertaining contact stress and maximum subsurface von Mises stress, it generally underestimates the stress when compared to the micrometer-scale subsurface stresses due to the presence of surface roughness. Contact analyses of cam and roller with rough surfaces are performed to examine the effects of two surface treatments. These involve surface finishing process in which a surface is rendered smooth, and the addition of a coating to the roller surface. Measurements of such cam and roller surfaces are used in micro-contact analysis module of a Surface Distress Analytical Toolkit to examine the effect of surface finish and coating on maximum subsurface stress. It is found that smooth surface provides a 53% reduction in maximum subsurface stress. The analysis also shows that the addition of coating further reduces subsurface stress nearly 7%. The impact of the combined treatment of the surface is an increase in contact fatigue life of the cam-roller system by nearly two orders of magnitude. The above findings are confirmed by laboratory tests using six rollers with various degrees of finishing processes, and with and without addition of coating to the surfaces. Examination of the rollers indicates a general improvement in roller performance due to addition of coating. Most notably, the combination of finishing process and coating was found to provide the best contact fatigue life since the corresponding rollers showed no observable wear even after testing for 2161h, or the same number of cycles accumulated over about 500,000 truck miles.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Current and Future Trends in Tribological Research;Lubricants;2023-09-11

2. Contact Stress Distribution of a Pear Cam Profile with Roller Follower Mechanism;Chinese Journal of Mechanical Engineering;2021-02-22

3. Deflection calculation of cam profile due to a Hertzian contact pressure;Journal of Mechanics;2020-12-19

4. Analytic and numerical results of a disc cam bending with a roller follower;SN Applied Sciences;2020-09-07

5. Investigation on cam–follower lubricated contacts;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2011-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3