Finite Displacement Screw Operators With Embedded Chasles’ Motion

Author:

Dai Jian S.1

Affiliation:

1. Chair of Mechanisms and RoboticsCentre for Advanced Mechanisms and Robotics, MoE Key Laboratory for Mechanism Theory and Equipment Design, School of Mechanical Engineering, Tianjin University, Tianjin; PR China School of Natural and Mathematical Sciences, King’s College London, University of London, Strand, London WC2R 2LS, UK

Abstract

Rigid body displacement can be presented with Chasles’ motion by rotating about an axis and translating along the axis. This motion can be implemented by a finite displacement screw operator in the form of either a 3 × 3 dual-number matrix or a 6 × 6 matrix that is executed with rotation and translation as an adjoint action of the Lie group. This paper investigates characteristics of this finite displacement screw matrix and decomposes the secondary part that is the off diagonal part of the matrix into the part of an equivalent translation due to the effect of off-setting the rotation axis and the part of an axial translation. The paper hence presents for the first time the axial translation matrix and reveals its property, leading to discovery of new results and new formulae. The analysis further reveals two new traces of the matrix and presents the relationship between the finite displacement screw matrix and the instantaneous screw, leading to the understanding of Chasles’ motion embedded in a rigid body displacement. An algebraic and geometrical interpretation of the finite displacementscrew matrix is thus given, presenting an intrinsic property of the matrix in relation to the finite displacement screw. The paper ends with a case study to verify the theory and illustrate the principle.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3