Three-Dimensional Force Perception of Robotic Bipolar Forceps for Brain Tumor Resection

Author:

Zhang Xiu-Heng1,Zhang Heng2,Li Zhen3,Bian Gui-Bin3

Affiliation:

1. School of Mechanical Engineering, Shenyang Ligong University, Shenyang, Liaoning 110159, China

2. School of Mechanical Engineering, Shenyang Ligong University, Shenyang, Liaoning, 110159 China; Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

3. The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Abstract Three-dimensional force perception is critically important in the enhancement of human force perception to minimize brain injuries resulting from excessive forces applied by surgical instruments in robot-assisted brain tumor resection. And surgeons are not responsive enough to interpret tool-tissue interaction forces. In previous studies, various force measurement techniques have been published. In neurosurgical scenarios, there are still some drawbacks to these presented approaches to forces perception. Because of the narrow, and slim configuration of bipolar forceps, three-dimensional contact forces on forceps tips are not easy to be traced in real-time. Five fundamental acts of handling bipolar forceps are poking, opposing, pressing, opening, and closing. The first three acts independently correspond to the axial force of z, x, y. So, in this paper, typical interactions between bipolar forceps and brain tissues have been analyzed. A three-dimensional force perception technique to collect force data on bipolar forceps tips by installing three fiber Bragg grating sensors (FBGs) on each prong of bipolar forceps in real-time is proposed. Experiments using a tele-neurosurgical robot were performed on an in vitro pig brain. In the experiments, three-dimensional forces were tracked in real-time. It is possible to experience forces at a minimum of 0.01 N. The three-dimensional force perception range is 0–4 N. The calibrating resolution on x, y, and z, is 0.01, 0.03, 0.1 N, separately. According to our observation, the measurement accuracy precision is over 95%.

Funder

Beijing Science and Technology Planning Project

Chinese Academy of Sciences

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference33 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3