Affiliation:
1. Georgia Institute of Technology, Atlanta, GA
2. Tennessee State University, Nashville, TN
Abstract
The performance of the NREL Phase VI horizontal axis wind turbine has been studied with a 3-D unsteady Navier-Stokes solver. This solver is third order accurate in space and second order accurate in time, and uses an implicit time marching scheme. Calculations were done for a range of wind conditions from 7 m/s to 25 m/s where the flow conditions ranged from attached flow to massively separated flow. A variety of turbulence models were studied: Baldwin-Lomax Model, Spalart-Allmaras one-equation model, and k-ε two equations model with and without wall corrections. It was found all the models predicted the normal forces and associated bending moments well, but most of them had difficulties in modeling the chord wise forces, power generation, and pitching moments. It was found that the k-ε model with near wall corrections did the best job of predicting most the quantities with acceptable levels of accuracy. Additional studies aimed at transition model development, and grid sensitivity studies in the tip region are deemed necessary to improve the correlation with experiments.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献