Investigation of Forming Cylindrical Parts in a Modified Hydrodynamic Deep Drawing Assisted by Radial Pressure With Inward Flowing Liquid

Author:

Yazdi Milad Sadegh1,Bakhshi-Jooybari Mohammad2,Gorji Hamid1,Shakeri Mohsen3,Khademi Maziar4

Affiliation:

1. Department of Mechanical Engineering, Advanced Material Forming Research Center, Babol Noshirvani University of Technology, Babol 48187-1167, Iran e-mail:

2. Professor Department of Mechanical Engineering, Advanced Material Forming Research Center, Babol Noshirvani University of Technology, Babol 48187-1167, Iran e-mail:

3. Professor Department of Mechanical Engineering, Fuel Cell Research Center, Babol Noshirvani University of Technology, Babol 48187-1167, Iran e-mail:

4. Mem. ASME Department of Mechanical Engineering, Advanced Material Forming Research Center, Babol Noshirvani University of Technology, Babol 48187-1167, Iran e-mail:

Abstract

Among the sheet hydroforming processes, hydrodynamic deep drawing (HDD) process has been used to form complex shapes and can produce parts with high drawing ratio. Studies showed that radial pressure created on the edge of the sheet can decrease the drawing force and increase drawing ratio. Thus, increasing of radial pressure to an amount greater than chamber pressure, and independent control of these pressures, is the basic idea in this study. In this research, the effect of radial and chamber pressures on formability of St13 and pure copper sheets in the process of hydrodynamic deep drawing assisted by radial pressure (HDDRP) with inward flowing liquid is investigated. Giving that a significant portion of the maximum thinning of the formed part occurs in the beginning of the process, the pressure supply system used in the experimental tests was designed in a way, which provides simultaneous control of the radial and chamber pressures throughout the process. Thickness distribution, forming force, and tensile stresses are the parameters that were evaluated in this study. Results indicated that using a higher radial pressure than the chamber pressure and controlling their values in the initial stages of the process enhances the thickness distribution of the formed part in all regions. A comparison between the thickness distribution and maximum forming force of the formed parts by the HDDRP and HDDRP with inward flowing liquid methods showed that by applying the later method, parts with more uniform thickness distribution and less maximum thinning and forming force can be achieved.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3