CFD Study of Pitch Variations On Helically Coiled Pipe in Laminar Flow Region

Author:

Faraj Anwer1,Azzawi Itimad D J2,Yahya Samir Ghazi2,Al-damook Amer3

Affiliation:

1. University of Manchester / UK, Ministry of oil, Iraqi Drilling Company / Iraq

2. Department of Mechanical Engineering, College of Engineering, University of Diyala, Baquba, Diyala, Iraq

3. Renewable Energy Research Center / University of Anbar

Abstract

Abstract Experimental investigations of the flows inside helically coiled pipe are difficult and may also be expensive, particularly for small diameters. Computational fluid dynamics (CFD) packages, which can easily construct the geometry and change the dimensions with 100% of accuracy, provide an alternative solution for the experimental difficulties and uncertainties. Therefore, a computational fluid dynamics (CFD) study was conducted to analyse the flow structure and the effect of varying the coil pitch on the coil friction factor, through utilising different models' configurations. Two coils were tested, all of them sharing the same pipe and coil diameter: 0.005m and 0.04m respectively. Pitch variations began with 0.01 and 0.05 m for the first, second model respectively. In this study, the velocity was analysed, and the effects of this reduction on coil friction factor were also examined using laminar flow. The results were validated by Ito's equation for the laminar flow.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3