Enhancing thermal-hydraulic performance in curved pipes through optimal radial fin placement: A numerical investigation

Author:

Ghaemian AminORCID,Maghrebi Mohammad-JavadORCID

Abstract

Increasing heat transfer in straight pipes, particularly in applications like heat exchangers, can be achieved by incorporating fins into the pipe wall. However, in curved pipes, the presence of more intricate flows resulting from centrifugal forces can alter this effect. The current study investigates how both the height and angular position of radial fins simultaneously influence the flow patterns within curved pipes. Adjusting the placement of radial fins is identified as a cost-effective and strategic approach to improve both the hydrodynamic and thermal efficiency in curved pipe systems. The numerical analysis focuses on studying laminar, incompressible flow in curved tubes with radial fins. The mass, momentum, and energy conservation equations in toroidal coordinates were discretized with the second-order finite difference method on a staggered grid, followed by their solution through the projection algorithm. The results indicate that adapting the angular position of the fins improves the thermal-hydraulic performance by 51.8%, 48.4%, 36.3%, and 20.6% for one to four fins, respectively. These changes are closely related to the behavior of the secondary flows. Furthermore, altering the height of the fins reveals that for three fins within the tube, the most optimal fin height is half of the tube radius. In other cases, a fin height equal to 0.7 multiplied by the tube radius provides the highest performance. From the numerical results, it is found that the primary factor affecting the heat transfer rate in curved pipes is the strength of secondary motions, while the generation of friction is influenced only by the axial velocity.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3