Design and Validation of a Compressor for a New Generation of Heavy-Duty Gas Turbines

Author:

Eulitz F.1,Kuesters B.1,Mildner F.1,Mittelbach M.1,Peters A.1,van den Toorn B.1,Waltke U.1,Rimmington P.2,Wasdell D.2

Affiliation:

1. Siemens AG Power Generation, Muelheim/Ruhr, Germany

2. Siemens Power Generation Inc., Orlando, FL

Abstract

Siemens H-Class. Siemens has developed the world-largest H-class Gas Turbine (SGT™) that sets unparalleled standards for high efficiency, low life cycle costs and operating flexibility. With a power output of 340+ MW, the SGT5–8000H gas turbine will be the primary driver of the new Siemens Combined Cycle Power Plant (SCC™) for the 50 Hz market, the SCC5–8000H, with an output of 530+ MW at more than 60% efficiency. After extensive lab and component testing, the prototype has been shipped to the power plant for an 18-month validation phase. In this paper, the compressor technology, which was developed for the Siemens H-class, is presented through its development and validation phases. Reliability and Availability. The compressor has been extensively validated in the Siemens Berlin Test Facility during consecutive engine test programs. All key parameters, such as mass flow, operating range, efficiency and aero mechanical behavior meet or exceed expectations. Six-sigma methodology has been exploited throughout the development to implement the technologies into a robust design. Efficiency. The new compressor technology applies the Siemens advanced aerodynamics design methodology based on the high performance airfoil (HPA) systematic which leads to broader operation range and higher efficiency than a standard controlled diffusion airfoil (CDA) design. Operational Flexibility. The compressor features an IGV and three rows of variable guide vanes for improved turndown capability and improved part load efficiency. Serviceability. The design has been optimized for serviceability and less complexity. Following the Siemens tradition, all compressor rotating blades can be replaced without rotor lift or destacking. Evolutionary Design Innovation. The compressor design incorporates the best features and experience from the operating fleets and technology innovation prepared through detailed research, analysis and lab testing in the past decade. The design tools are based on best practices from former Siemens KWU and Westinghouse with enhancements allowing for routine front-to-back compressor 3D CFD multistage analysis, unsteady blade row interaction, forced response analyses and aero-elastic analysis.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3