Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation

Author:

Puso M. A.1,Weiss J. A.2

Affiliation:

1. Methods Development Group, Lawrence Livermore National Laboratory, Livermore, CA 94550

2. Orthopedic Biomechanics Institute, The Orthopedic Specialty Hospital, Salt Lake City, UT 84107; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112

Abstract

The objective of this work was to develop a theoretical and computational framework to apply the finite element method to anisotropic, viscoelastic soft tissues. The quasi-linear viscoelastic (QLV) theory provided the basis for the development. To allow efficient and easy computational implementation, a discrete spectrum approximation was developed for the QLV relaxation function. This approximation provided a graphic means to fit experimental data with an exponential series. A transversely isotropic hyperelastic material model developed for ligaments and tendons was used for the elastic response. The viscoelastic material model was implemented in a general-purpose, nonlinear finite element program. Test problems were analyzed to assess the performance of the discrete spectrum approximation and the accuracy of the finite element implementation. Results indicated that the formulation can reproduce the anisotropy and time-dependent material behavior observed in soft tissues. Application of the formulation to the analysis of the human femur-medial collateral ligament–tibia complex demonstrated the ability of the formulation to analyze large three-dimensional problems in the mechanics of biological joints.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3