Affiliation:
1. Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering Campus Universitário de Santiago, University of Aveiro Aveiro Portugal
2. LASI—Intelligent Systems Associate Laboratory Guimaraes Portugal
3. Faculty of Mechanical Engineering Wroclaw University of Science and Technology Wrocław Poland
Abstract
AbstractTraumatic brain injury is a significant problem worldwide. In the United States of America, around 1.7 million cases are documented annually, displaying the need for a deeper understanding of the effects on the human brain. The tests required for this assessment are very complex. Tests on cadavers may raise serious ethical questions, and in vivo crash tests are not viable. In this context, there is a great need to developing finite element head models (FEHM) to study the biomechanics of the tissues when submitted to a certain impact or acceleration/deceleration scenario. An excellent compromise between accuracy and CPU efficiency is always desirable for a FEHM, For this reason, this work focuses on the improvement of an existing head model, including the study of the behavior of the brain using distinct finite element types. The finite element type and formulation is of utmost importance for the general accuracy and efficiency of the models. Several validations were performed, comparing the simulation results against experimental data. The simulations with hexahedral elements, under specific conditions, obtained more accurate results with a lower computational cost. Using hexahedrals, a comparison was also performed using two material characterizations with more than 10 years apart, using the latest finite element head model validation experiment. Overall, the newer material model displays a less stiff response, although its implementation must always depend on the overall purpose of the model it is being applied to.
Funder
European Regional Development Fund