Incipient Bearing Fault Feature Extraction Based on Minimum Entropy Deconvolution and K-Singular Value Decomposition

Author:

Dong Guangming1,Chen Jin2,Zhao Fagang3

Affiliation:

1. State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

2. State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

3. Shanghai Institute of Satellite Engineering, 251 Huaning Road, Minhang District, Shanghai 200240, China

Abstract

Machinery condition monitoring and fault diagnosis are essential for early detection of equipment malfunctions or failures, which insure productivity, quality, and safety in the manufacturing process. This paper aims at extracting fault features of rolling element bearings at the incipient fault stage. K-singular value decomposition (K-SVD), one technique for sparse representation of signals, is used for study. In K-SVD, its dictionary is trained from data by machine learning techniques, which allows more flexibility to adapt to variation of real signals than the predefined dictionaries. Analysis on simulated bearing signals and real signals shows that K-SVD can give better bearing fault features than the predefined dictionaries such as wavelet dictionaries. However, during our simulation study, K-SVD was found to have large representation error under heavy noise. To reduce the noise effect, minimum entropy deconvolution (MED) is used as a prefilter. The combination of MED and K-SVD is proposed for incipient bearing fault detection. The method is verified by simulation and experimental study. It is shown that the proposed method can effectively extract the impulsive fault feature of the tested bearing at its incipient fault stage.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3