Comparison of the Flame Characteristics of Turbulent Circular and Elliptic Jets in a Crossflow

Author:

Gollahalli S. R.1,Pardiwalla D.1

Affiliation:

1. School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019

Abstract

This study was directed to understand the coupling effects of the noncircular geometry of the burner and a crossflow on the combustion of gas jets. This paper compares the characteristics of turbulent propane jet flames from circular (diameter=0.45 cm) and elliptic (major axis/minor axis=3) burners of equivalent exit area in a crossflow. The elliptic burner was oriented with its major axis or minor axis aligned with the crossflow. Experiments were conducted in a wind tunnel provided with optical and probe access and capable of wind speeds up to 12.5 m/s. The burners were fabricated with metal tubes. Instrumentation included a Pt-Pt/13% Rh thermocouple, a quartz-probe gas sampling system, chemiluminescent and nondispersive infrared analyzers, a video-recorder, and a computer data acquisition system. The measurements consisted of the upper and lower limits of jet velocity for a stable flame, flame configuration, and visible length. Flame structure data including temperature profiles and concentration profiles of CO2,O2, CO, and NO were obtained in a two-zone flame configuration (at jet to crossflow momentum flux ratio=0.11), where a planar recirculation exists in the wake of the burner tube followed by an axisymmetric tail. The relative emission indicators of CO and NO were estimated from the composition data. Results show that the upper and lower limits of the fuel jet velocity increase with the crossflow velocity for all burners, and the rate of increase is highest for the elliptic burner with its minor axis aligned with the crossflow. That burner configuration also produces the longest flame. The relative emission indicators show that the CO production is lower and NO production is higher with elliptic burners than with circular burners in crossflow.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3