Numerical Simulation of Laminar Flow of Yield-Power-Law Fluids in Conduits of Arbitrary Cross-Section

Author:

Azouz Idir1,Shirazi Siamack A.1,Pilehvari Ali2,Azar J. J.2

Affiliation:

1. Mechanical Engineering Department, The University of Tulsa, Tulsa, OK 74104-3189

2. Petroleum Engineering Department, The University of Tulsa, Tulsa, OK 74104-3189

Abstract

A numerical model has been developed to simulate laminar flow of Power-law and Yield-Power law fluids in conduits of arbitrary cross-section. The model is based on general, nonorthogonal, boundary-fitted, curvilinear coordinates, and represents a new approach to the solution of annular flow problems. The use of an effective viscosity in the governing equation of the flow allows the study of the flow behavior of any fluid for which the shear stress is a function of shear rate only. The model has been developed primarily to simulate annular flow of fluids used in drilling and completion operations of oil or gas wells. Predicted flow rates versus pressure gradient for laminar flow of Newtonian fluids in concentric and eccentric annuli, and Power-law fluids in concentric annuli compare very well with results derived from analytical expressions. Moreover, the predictions for laminar flow of Power-law and Yield-Power-law fluids in eccentric annuli are in excellent agreement with numerical and experimental data published in the literature. The model was also successfully applied to the case of laminar flow of Power-law fluids in an eccentric annulus containing a stationary bed of drilled cuttings and the results are presented herein.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3