Application of boundary-fitted convolutional neural network to simulate non-Newtonian fluid flow behavior in eccentric annulus
Author:
Funder
Universiti Teknologi Petronas
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Software
Link
https://link.springer.com/content/pdf/10.1007/s00521-022-07092-w.pdf
Reference72 articles.
1. Peng Y, Lv BH, Yuan JL, et al (2014) Application and prospect of the non-Newtonian fluid in industrial field. In: Materials science forum. Trans Tech Publications Ltd, pp 396–401
2. Sun L, Gao H, Pan S, Wang JX (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732. https://doi.org/10.1016/j.cma.2019.112732
3. Adariani YH (2005) Numerical simulation of laminar flow of non-Newtonian fluids in eccentric annuli. MSc thesis. The University of Tulsa
4. Fang P, Manglik RM, Jog MA (1999) Characteristics of laminar viscous shear-thinning fluid flows in eccentric annular channels. J Nonnewton Fluid Mech 84:1–17. https://doi.org/10.1016/S0377-0257(98)00145-1
5. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707. https://doi.org/10.1016/j.jcp.2018.10.045
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Flow pattern identification of gas-liquid two-phase flow based on integrating mechanism analysis and data mining;Geoenergy Science and Engineering;2023-09
2. A deep learning framework for solving forward and inverse problems of power-law fluids;Physics of Fluids;2023-09-01
3. Computationally effective estimation of supersonic flow field around airfoils using sparse convolutional neural network;Fluid Dynamics Research;2023-06-01
4. Prediction of internal and external flow with sparse convolution neural network: A computationally effective reduced-order model;Physics of Fluids;2023-02-01
5. Correction to: Application of boundary-fitted convolutional neural network to simulate non-Newtonian fluid flow behavior in eccentric annulus;Neural Computing and Applications;2022-08-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3