Affiliation:
1. Department of Mechanical Engineering, The Ohio State University, 206 W. 18th Avenue, Columbus, OH 43210
Abstract
Steady state analysis is conducted on a multipulley serpentine belt drive with a spring-loaded tensioner assembly. Classical creep theory is extended to incorporate belt bending stiffness as well as the belt stretching and centripetal accelerations. The belt is modeled as an axially moving Euler–Bernoulli beam with nonuniform speed due to belt extensibility and variation of belt tension. The geometry of the belt-pulley contact zones and the corresponding belt tension and friction distributions are the main factors affecting belt slip. Bending stiffness introduces nontrivial span deflections, reduces the wrap angles, and makes the belt-pulley contact points unknown a priori. The free span boundary value problems (BVP) with undetermined boundaries are transformed to a fixed boundary form. A two-loop iteration method, necessitated by the tensioner assembly, is developed to find the system steady state. The effects of system parameters on serpentine drive behavior are explored in the context of an actual automotive belt drive.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献