Mobility of Single-Loop N-Bar Linkage With Active/Passive Prismatic Joints

Author:

Guo W. Z.1,Du R.2

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, P.R.C. 200240

2. Department of Automation and Computer Aided Engineering, The Chinese University of Hong Kong, Shatin, N. T. Hong Kong, P.R.C.

Abstract

Single-loop N-bar linkages that contain one prismatic joint are common in engineering. This type of mechanism often requires complicated control and, hence, understanding its mobility is very important. This paper presents a systematic study on the mobility of this type of mechanism by introducing the concept of virtual link. It is found that this type of mechanism can be divided into three categories: Class I, Class II, and Class III. For each category, the slide reachable range is cut into different regions: Grashof region, non-Grashof region, and change-point region. In each region, the rotation range of the revolute joint or rotatability of the linkage can be determined based on Ting’s criteria. The characteristics charts are given to describe the rotatability condition. Furthermore, if the prismatic joint is an active joint, the revolvability of the input revolute joint is dependent in non-Grashof region but independent in other regions. If the prismatic joint is a passive joint, the revolvability of the input revolute joint is dependent on the offset distance of the prismatic joint. Two examples are given to demonstrate the presented method. The new method is able to cover all the cases of N-bar planar linkages with one or a set of adjoined prismatic joints. It can also be used to study N-bar open-loop planar robotic mechanisms.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference45 articles.

1. Mobility and Synthesis of Five-Bar Programmable Linkages;Ting

2. Five-Bar Grashof Criteria;Ting;ASME J. Mech., Transm., Autom. Des.

3. Mobility Criteria of Geared Five-Bar Linkages;Ting;Mech. Mach. Theory

4. Branch Identification of Geared Five-Bar Chain;Dou;ASME J. Mech. Des.

5. Synthesis of a Geared N-bar linkage;Dimarogonas;ASME J. Eng. Ind.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3