Three-Dimensional-Printed Multistable Mechanical Metamaterials With a Deterministic Deformation Sequence

Author:

Che Kaikai1,Yuan Chao23,Wu Jiangtao1,Jerry Qi H.1,Meaud Julien1

Affiliation:

1. G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 e-mail:

2. G.W.W. School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

3. State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, School of Aerospace Engineering, Xi'an Jiaotong University, Shaanxi, Xi'an 710049, China e-mail:

Abstract

Multistable mechanical metamaterials are materials that have multiple stable configurations. The geometrical changes caused by the transition of the metamaterial from one stable state to another, could be exploited to obtain multifunctional and programmable materials. As the stimulus amplitude is varied, a multistable metamaterial goes through a sequence of stable configurations. However, this sequence (which we will call the deformation sequence) is unpredictable if the metamaterial consists of identical unit cells. This paper proposes to use small variations in the unit cell geometry to obtain a deterministic deformation sequence for one type of multistable metamaterial that consists of bistable unit cells. Based on an analytical model for a single unit cell and on the minimization of the total strain energy, a rigorous theoretical model is proposed to analyze the nonlinear mechanics of this type of metamaterials and to inform the designs. The proposed theoretical model is able to accurately predict the deformation sequence and the stress–strain curves that are observed in the finite-element simulations with an elastic constitutive model. A deterministic deformation sequence that matches the sequence predicted by the theory and finite-element simulations is obtained in experiments with 3D-printed samples. Furthermore, an excellent quantitative agreement between simulations and experiments is obtained once a viscoelastic constitutive model is introduced in the finite-element model.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3