Metamaterial-based Broadband Elastic Wave Absorber

Author:

Pai P. Frank1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA,

Abstract

This article presents modeling and analysis techniques for and reveals the actual working mechanism of longitudinal metamaterial bars as elastic wave absorbers. A metamaterial-based elastic wave absorber can be a uniform isotropic bar with many tiny spring-mass subsystems attached at separated longitudinal locations. In the literature, each cell that consists of a bar segment and an attached spring-mass subsystem is modeled as a discrete system of two degrees of freedom by integration and/or finite difference, and the idealized model becomes a dispersive medium for elastic waves and has a stop band that allows no waves to propagate forward. This work shows that these idealized models can be used only for elastic waves having wavelengths much longer than the unit cell’s length. Moreover, it is revealed that a metamaterial-based elastic wave absorber is actually based on the concept of conventional mechanical vibration absorbers, which uses the local resonance of subsystems to generate inertia forces to work against the external load and prevent elastic waves from propagating forward. This concept is extended to design a broadband absorber that works for elastic waves of any wavelengths, including waves having wavelengths shorter than the unit cell’s length. Numerical examples validate the design and reveal the cause of stop band. Moreover, the effect of negative effective mass and acoustic and optical modes are explained.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3