Analysis of Aerothermal Characteristics of Surface Microstructures

Author:

Kapsis M.1,He L.1

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX2 0ES, UK e-mail:

Abstract

Recent advances in manufacturing technologies, such as additive manufacturing (AM), have raised the potential of choosing surface finish pattern as a design parameter. Hence, understanding and prediction of aerothermal effects of machined microstructures (machined roughness) would be of great interest. So far, however, roughness has been largely considered as a stochastic attribute and empirically modeled. A relevant question is: if and how would shape of the machined roughness elements matter at such fine scales? In this paper, a systematic computational study has been carried out on the aerothermal impact of some discrete microstructures. Two shapes of configurations are considered: hemispherical and rectangular elements for a Reynolds number range typical for such structures (Re < 5000). Several validation cases are studied as well as the turbulence modeling and grid sensitivities are examined to ensure the consistency of the results. Furthermore, large eddy simulation (LES) analyses are performed to contrast the behavior in a well-established turbulent to a transitional flow regime. The results reveal a distinctive common flow pattern change (from an “open separation” to a “reattached separation”) associated with a drastic change of drag correlation from a low to a high loss regime. The results indicate a clear dependence of drag and heat transfer characteristics on the element pattern and orientation relative to the flow. The distinctive performance correlations with Reynolds number can be affected considerably by the element shape, for both a transitional and a turbulent flow regime. The results also consistently illustrate that conventional empirical stochastic roughness parameters would be unable to predict these trends.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation on Atomization Characteristics of the 3D Printed and Conventional Swirl Coaxial Injector;Proceeding of Proceedings of the 27th National and 5th International ISHMT-ASTFE Heat and Mass Transfer Conference December 14-17, 2023, IIT Patna, Patna-801106, Bihar, India;2024

2. A comparison of RANS models used for CFD prediction of turbulent flow and heat transfer in rough and smooth channels;International Journal of Thermofluids;2023-11

3. Two‐scale conjugate heat transfer solution for micro‐structured surface;International Journal for Numerical Methods in Fluids;2023-03-22

4. Impact of Wall Temperature on Aerothermal Characteristics of an Array of Surface Microstructures;Journal of Fluids Engineering;2022-11-23

5. Effect of a Ceramic Matrix Composite Surface on Film Cooling;Journal of Turbomachinery;2022-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3