Pressure Gradient Effects on Smooth- and Rough-Surface Turbulent Boundary Layers—Part II: Adverse Pressure Gradient

Author:

Shin Ju Hyun1,Jin Song Seung2

Affiliation:

1. Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea e-mail:

2. Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-744, Korea

Abstract

An experimental investigation has been conducted to identify the effects of pressure gradient and surface roughness on turbulent boundary layers. In Part II, smooth- and rough-surface turbulent boundary layers with and without adverse pressure gradient (APG) are presented at a fixed Reynolds number (based on the length of flat plate) of 900,000. Flat-plate boundary layer measurements have been conducted using a single-sensor, hot-wire probe. For smooth surfaces, compared to the zero pressure gradient (ZPG) boundary layer, the APG boundary layer has a higher mean velocity defect throughout the boundary layer and lower friction coefficient. APG decreases the streamwise normal Reynolds stress for y less than 0.4 times the boundary layer thickness and increases it slightly in the outer region. For rough surfaces, APG reduces the roughness effects of increasing the mean velocity defect and normal Reynolds stress for y less than 23 and 28 times the average roughness height, respectively. Consistently, for the same roughness, APG decreases the integrated streamwise turbulent kinetic energy. APG also decreases the roughness effect on the friction coefficient, roughness Reynolds number, and roughness shift. Compared to the ZPG boundary layers, the roughness effects on integral boundary layer parameters—boundary layer thickness and momentum thickness—are weaker under APG. Thus, contrary to the favorable pressure gradient (FPG) in part I, APG reduces the roughness effects on turbulent boundary layers.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3