Experiments on In-line Pin Fin Arrays and Performance Comparisons with Staggered Arrays

Author:

Sparrow E. M.1,Ramsey J. W.1,Altemani C. A. C.1

Affiliation:

1. Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minn. 55455

Abstract

Heat transfer and pressure drop experiments were performed for in-line pin fin arrays to obtain basic data to complement available information for staggered arrays. The experimental data were utilized as input to analyses aimed at establishing performance relationships between in-line and staggered arrays. In the experiments, mass transfer measurements via the naphthalene sublimation technique were employed to determine the row-by-row distribution of the heat (mass) transfer coefficient. Fully developed conditions prevailed for the fourth row and beyond. In general, the fully developed heat transfer coefficients for the in-line array are lower than those for the staggered array, but the pressure drop is also lower. The deviations between the two arrays increase with increasing fin height. With regard to performance, the in-line array transfers more heat than the staggered array under conditions of equal pumping power and equal heat transfer area. On the other hand, at a fixed heat load and fixed mass flow rate, the staggered array requires less heat transfer surface than the in-line array.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3