Critical and Choking Mach Numbers for Organic Vapor Flows Through Turbine Cascades

Author:

aus der Wiesche Stefan1,Reinker Felix1,Wagner Robert1,Hake Leander1,Passmann Max1

Affiliation:

1. Muenster University of Applied Sciences, Steinfurt, Germany

Abstract

Abstract Results are presented of a theoretical and experimental study dealing with critical and choking Mach numbers of organic vapor flows through turbine cascades. A correlation was derived for predicting choking Mach numbers for organic vapor flows using an asymptotic series expansion valid for isentropic exponents close to unity. The theoretical prediction was tested employing a linear turbine cascade and a circular cylinder in a closed-loop organic vapor wind tunnel. The cascade was based on a classical transonic turbine airfoil for which perfect gas literature data were available. The cascade was manufactured by Selective Laser Melting (SLM), and a comparable low surface roughness level was established by subsequent surface finishing. Because the return of the closed-loop wind tunnel was equipped with an independent mass flow sensor and the test facility enabled stable long-term operation behavior, it was possible to obtain the choking Mach number with high accuracy. It was observed that non-perfect gas dynamics affect the critical Mach number locally, but the observed choking behavior of the turbine cascade was in good agreement with the asymptotic result for the considered dilute gas flow regime.

Publisher

American Society of Mechanical Engineers

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Innovations for organic Rankine cycle power systems: Current trends and future perspectives;Applied Thermal Engineering;2023-05

2. Experimental Investigation Techniques for Non-Ideal Compressible Fluid Dynamics;International Journal of Turbomachinery, Propulsion and Power;2023-04-03

3. Shock losses and Pitot tube measurements in non-ideal supersonic and subsonic flows of Organic Vapors;Energy;2023-02

4. Grid-Generated Decaying Turbulence in an Organic Vapour Flow;Proceedings of the 4th International Seminar on Non-Ideal Compressible Fluid Dynamics for Propulsion and Power;2023

5. Shock loss measurements in non-ideal supersonic flows of organic vapors;Experiments in Fluids;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3