Development and Validation of an Operational, Cloud-Assimilating Numerical Weather Prediction Model for Solar Irradiance Forecasting

Author:

Mathiesen Patrick J.1,Collier Craig2,Kleissl Jan P.1

Affiliation:

1. University of California, San Diego, San Diego, CA

2. Garrad-Hassan America, Inc., San Diego, CA

Abstract

For solar irradiance forecasting, the operational numerical weather prediction (NWP) models (e.g. the North American Model (NAM)) have excellent coverage and are easily accessible. However, their accuracy in predicting cloud cover and irradiance is largely limited by coarse resolutions (> 10 km) and generalized cloud-physics parameterizations. Furthermore, with hourly or longer temporal output, the operational NWP models are incapable of forecasting intra-hour irradiance variability. As irradiance ramp rates often exceed 80% of clear sky irradiance in just a few minutes, this deficiency greatly limits the applicability of the operational NWP models for solar forecasting. To address these shortcomings, a high-resolution, cloud-assimilating model was developed at the University of California, San Diego (UCSD) and Garrad-Hassan, America, Inc (GLGH). Based off of the Weather and Research Forecasting (WRF) model, an operational 1.3 km-gridded solar forecast is implemented for San Diego, CA that is optimized to simulate local meteorology (specifically, summertime marine layer fog and stratus conditions) and sufficiently resolved to predict intra-hour variability. To produce accurate cloud-field initializations, a direct cloud assimilation system (WRF-CLDDA) was also developed. Using satellite imagery and ground weather station reports, WRF-CLDDA statistically populates the initial conditions by directly modifying cloud hydrometeors (cloud water and water vapor content). When validated against the dense UCSD pyranometer network, WRF-CLDDA produced more accurate irradiance forecasts than the NAM and more frequently predicted marine layer fog and stratus cloud conditions.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3